Answer: 16 atm
Explanation:
P1V1 = P2V2
P2 = P1V1/V2
=4 atm x 8.00 L/2.00L = 16 atm
Answer:
490 in^3 = 8.03 L
Explanation:
Given:
The engine displacement = 490 in^3
= 490 in³
To determine the engine piston displacement in liters L;
(NOTE: Both in^3 (in³) and L are units of volume). Hence, to find the engine piston displacement in liters (L), we will convert in^3 to liters (L)
First, we will convert in³ to cm³
Since 1 in = 2.54 cm
∴ 1 in³ = 16.387 cm³
If 1 in³ = 16.387 cm³
Then 490 in³ = (490 in³ × 16.387 cm³) / 1 in³ = 8029.63 cm³
∴ 490 in³ = 8029.63 cm³
Now will convert cm³ to dm³
(NOTE: 1 L = 1 dm³)
1 cm = 1 × 10⁻² m = 1 × 10⁻¹ dm
∴ 1 cm³ = 1 × 10⁻⁶ m³ = 1 × 10⁻³ dm³
If 1 cm³ = 1 × 10⁻³ dm³
Then, 8029.63 cm³ = (8029.63 cm³ × 1 × 10⁻³ dm³) / 1 cm³ = 8.02963 dm³
≅ 8.03 dm³
∴ 8029.63 cm³ = 8.03 dm³
Hence, 490 in³ = 8029.63 cm³ = 8.03 dm³
Since 1L = 1 dm³
∴ 8.03 dm³ = 8.03 L
Hence, 490 in³ = 8.03 L
Answer:
Here's what I get
Explanation:
You may have done a Williamson synthesis of guaifenesin by reacting guaiacol with 3-chloropropane-1,2-diol.
A. Mechanism
Step 1
NaOH converts guaiacol into a phenoxide ion.
Step 2
The phenoxide acts as the nucleophile in an SN2 reaction to displace the Cl from the alkyl halide.
B. Improve the yield
You probably carried out the reaction in ethanol solution — a polar protic solvent.
You might try doing the reaction in a polar aprotic solvent— perhaps DMSO.
A polar aprotic solvent does not hydrogen bond to nucleophiles, so they become stronger.
C. Another method of ether synthesis —dehydration of alcohols
Sulfuric acid catalyzes the conversion of primary alcohols to ethers.
This is also a nucleophilic displacement reaction.
Protonation of the OH converts it into a better leaving group.
Attack by a second molecule of alcohol forms the protonated ether.
A molecule of water then removes the proton.
Explanation:
Atomic radius decreases from left to right in a period.
Therefore Calcium would have a smaller atomic size.
Answer:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Explanation:
According to the Aufbau principle, electrons are filled in orbitals in order of increasing energy. The energy of orbitals in the electronic configuration of manganese increases from left to right, hence 3d orbital is much greater in energy than a 3p orbital.
The arrangement of orbitals in order of increasing energy is shown in the answer above.