1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
10

A microwave transmitter has an output of 0.1W at 2 GHz. Assume that this transmitter is used in a microwave communication system

where the transmitting and receiving antennas are parabola, each 1.2m in diameter.
a. What is the gain of each antenna?

b. If the receiving antenna is located 24 km from the transmitting antenna over a free space path, find the available signal power out of the receiving antenna.
Engineering
1 answer:
Len [333]3 years ago
4 0

Answer:

gain = 353.3616

P_r = 1.742*10^-8 W

Explanation:

Given:

- The output Power P_o = 0.1 W

- The diameter of the antennas d = 1.2 m

- The frequency of signal f = 2 GHz

Find:

a. What is the gain of each antenna?

b. If the receiving antenna is located 24 km from the transmitting antenna over a free space path, find the available signal power out of the receiving antenna.

Solution:

- The gain of the parabolic antenna is given by the following formula:

                            gain = 0.56 * 4 * pi^2 * r^2 / λ^2

Where, λ : The wavelength of signal

            r: Radius of antenna = d / 2 = 1.2 / 2 = 0.6 m

- The wavelength can be determined by:

                            λ = c / f

                            λ = (3*10^8) / (2*10^9)

                            λ = 0.15 m

- Plug in the values in the gain formula:

                            gain = 0.56 * 4 * pi^2 * 0.6^2 / 0.15^2

                            gain = 353.3616

- The available signal power out from the receiving antenna is:

                            P_r = (gain^2 * λ^2 * W) / (16*pi^2 * 10^2 * 10^6)

                            P_r = (353.36^2 * 0.15^2 * 0.1) / (16*pi^2 * 10^2 * 10^6)

                            P_r = 1.742*10^-8 W

You might be interested in
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
3 years ago
What are the potential hazards relating to materials handling injuries?
const2013 [10]

all 4 apply all these are saftey hazards and must be taken as such anything in a work enviorment should be taken seriously and such as hazard

5 0
3 years ago
What information is usually gathered during vehicle crash tests?
aleksley [76]
Time, distance, damage
7 0
3 years ago
Air at 40°C flow steadily through the pipe shown in Fig. 1 below. If P1 = 40 kPa (gage), P2 = 10 kPa (gage), D = 3d, Patm ≅ 100
Dafna1 [17]

Based on the average velocity at section 2, and the absolute pressures at both sectors, the average speed at section 1 is 2.226 m/s.

<h3>What is the average speed at section 1?</h3>

Density at P₁:

= (40 + 100) / (0.287 x  (40 + 273))

= 1.5585 kg/m³

Density at P₂:
= (10 + 100) / (0.287 x  (40 + 273))

= 1.2245 kg/m³

The average speed at section 1 is:

= (Density at P₂ x d² x 25.5) / (Density at P₁ x 9d²)

= 2.226 m/s

Find out more on average velocity at brainly.com/question/17444459.

#SPJ1

8 0
3 years ago
The ________ is considered the normal operating control of an air conditioner, according to the Standards of Practice. thermosta
mamaluj [8]

Answer:

Thermostat

Explanation:

The thermostat is considered the normal operating control of an air conditioner, according to the Standards of Practice.

8 0
2 years ago
Other questions:
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    6·1 answer
  • Under maximum power transfer conditions, the operating efficiency of a system is 100%. (a) True (b) False
    6·1 answer
  • The radiator of a steam heating system has a volume of 20 L and is filled with superheated water vapor at 200 kPa and 200°C. At
    7·1 answer
  • What’s the population in the world and why does it keep increasing in bad areas.
    8·1 answer
  • Determine FBC , the magnitude of the force in member BC, using the method of sections. Assume for your calculations that each me
    7·1 answer
  • When CO2 rises, temperature rises. Why do you think this is?
    15·1 answer
  • Sarah and Raj take/takes me to a baseball game every year.
    11·1 answer
  • Compute the atomic density (the number of atoms per cm3 rather than mass density g/cm3) for a perfect crystal of silicon at room
    14·1 answer
  • A European apparel manufacturer has production facilities in Italy and China to serve its European market, where annual demand i
    6·1 answer
  • During the isothermal heat rejection process of a Carnot cycle, the working fluid experiences an entropy change of -0.7 Btu/R. I
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!