The total present worth is $19,783.01
The present worth of a series of cash flow is the value of the cash flows in year 0 (today)
Cash flow in year 0 = 5330
Cash flow in year 1 = 0
Cash flow in year 2 = 0
Cash flow in year 3 = 13075 / (1.02)^3 = 12,320.86
Cash flow in year 4 = 2308 / (1.02)^4 = 2,132.24
Present worth = $19,783.01
A similar question was solved here: brainly.com/question/9641711?referrer=searchResults
Answer:
hello below is missing piece of the complete question
minimum size = 0.3 cm
answer : 0.247 N/mm2
Explanation:
Given data :
section span : 10.9 and 13.4 cm
minimum load applied evenly to the top of span : 13 N
maximum load for each member ; 4.5 N
lets take each member to be 4.2 cm
Determine the max value of P before truss fails
Taking average value of section span ≈ 12 cm
Given minimum load distributed evenly on top of section span = 13 N
we will calculate the value of by applying this formula
=
= 1.56 * 10^-5
next we will consider section ; 4.2 cm * 0.3 cm
hence Z (section modulus ) = BD^2 / 6
= ( 0.042 * 0.003^2 ) / 6 = 6.3*10^-8
Finally the max value of P( stress ) before the truss fails
= M/Z = ( 1.56 * 10^-5 ) / ( 6.3*10^-8 )
= 0.247 N/mm2
Answer:
C = 292 Mbps
Explanation:
Given:
- Signal Transmitted Power P = 250mW
- The noise in channel N = 10 uW
- The signal bandwidth W = 20 MHz
Find:
what is the maximum capacity of the channel?
Solution:
-The capacity of the channel is given by Shannon's Formula:
C = W*log_2 ( 1 + P/N)
- Plug the values in:
C = (20*10^6)*log_2 ( 1 + 250*10^-3/10)
C = (20*10^6)*log_2 (25001)
C = (20*10^6)*14.6096
C = 292 Mbps
Answer:
Under no circumstances
Explanation:
I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what