Answer:
The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero
Explanation:
The expression for the maximum shear stress is given:

Where
σx = stress in vertical plane = 20 ksi
σy = stress in horizontal plane = -30 ksi
τM = 32 ksi
Replacing:

Solving for τxy:
τxy = ±19.98 ksi
The principal stress is:

Where
σp1 = 20 ksi
σp2 = -30 ksi
(equation 1)
equation 2
Solving both equations:
σp1 = 27 ksi
σp2 = -37 ksi
The shear stress on the vertical plane is zero
Answer: Partial pressures are 0.6 MPa for nitrogen gas and 0.4 MPa for carbon dioxide.
Explanation: <u>Dalton's</u> <u>Law</u> <u>of</u> <u>Partial</u> <u>Pressure</u> states when there is a mixture of gases the total pressure is the sum of the pressure of each individual gas:

The proportion of each individual gas in the total pressure is expressed in terms of <u>mole</u> <u>fraction</u>:
= moles of a gas / total number moles of gas
The rigid tank has total pressure of 1MPa.
molar mass = 14g/mol
mass in the tank = 2000g
number of moles in the tank:
= 142.85mols
molar mass = 44g/mol
mass in the tank = 4000g
number of moles in the tank:
= 90.91mols
Total number of moles: 142.85 + 90.91 = 233.76 mols
To calculate partial pressure:

For Nitrogen gas:

= 0.6
For Carbon Dioxide:



0.4
Partial pressures for N₂ and CO₂ in a rigid tank are 0.6MPa and 0.4MPa, respectively.
Answer:
Everything I got what you need
Answer:
Vgr = 0.122 = 12.2 vol %
Explanation:
Density of ferrite = 7.9 g/cm^3
Density of graphite = 2.3 g/cm^3
<u>compute the volume percent of graphite </u>
for a 3.9 wt% cast Iron
W∝ = (100 - 3.9) / ( 100 -0 ) = 0.961
Wgr = ( 3.9 - 0 ) / ( 100 - 0 ) = 0.039
Next convert the weight fraction to volume fraction using the equation attached below
Vgr = 0.122 = 12.2 vol %