4V is the necessary voltage to power the electrolysis of molten sodium chloride.
To create sodium metal and chlorine gas, molten (liquid) sodium chloride can be electrolyzed. A Down's cell is the name of the electrolytic cell utilised in the procedure. The liquid sodium ions in a Down's cell are converted to liquid sodium metal at the cathode. Liquid chlorine ions are oxidised to chlorine gas at the anode. Below is an illustration of the reactions and cell potentials:
oxidation:
→
+
E°= -1.36V
reduction:
→
E°= -2.71V
overall :
→
E°
= -4.07V
For this electrolysis to take place, the battery needs to supply more than 4 volts. The only means to obtain pure sodium metal is by this reaction, which also serves as a significant source of chlorine gas generation. Swimming pools and other surfaces are frequently cleaned and disinfected with chlorine gas.
Learn more about sodium chloride here;
brainly.com/question/9811771
#SPJ4
Answer:
what the heck what is that?
Explanation:
As per the question, the mass of the nitrogen gas m = 22.25 gram.
The latent heat of vaporization of nitrogen = 199.0 j/g
As per the question, the nitrogen gas will condense. During condensation, the nitrogen gas will lose or release heat equal to its latent heat.
Hence, the heat released by nitrogen gas Q = ml = 22.25 × 199.0 J = 4427.75 J.
Hence, the amount of heat released will be 4427.75 J.
<h3>How can you figure out how much heat is in each gram?</h3>
The formula: can be utilized to determine energy. Q = mc ∆T. In the equation, Q stands for energy expressed in joules or calories, m for mass expressed in grams, c for specific heat, and T for temperature change, which is the difference between the final temperature and the initial temperature. Water has a specific heat of 1 calorie/gram °C.
Learn more about energy here:
brainly.com/question/1932868
#SPJ4
Answer:
k = -0.09165 years^(-1)
Explanation:
The exponential decay model of a radioactive isotope is generally given as;
A(t) = A_o(e^(kt))
Where;
A_o is quantity of isotope before decay, k is decay constant and A(t) is quantity after t years
We are given;
A_o = 5 kg
A(10) = 2kg
t = 10 years
Thus;
A(10) = 2 = 5(e^(10k))
Thus;
2 = 5(e^(10k))
2/5 = (e^(10k))
0.4 = (e^(10k))
In 0.4 = 10k
-0.9164 = 10k
k = -0.9164/10
k = -0.09165 years^(-1)
K stands for thousands
1 k = 1000
1 milli = 0.001
covert 878kg to g
878 x 1000=878000 g or (8.78^5)
convert g to mg
878000 / 0.001 =878,000,000
=8.78^8
^ or E means power of