Answer:
We need 226 grams of FeS
Explanation:
Step 1: Data given
Mass of FeCl2 = 326 grams
Molar mass FeCl2 = 126.75 g/mol
Step 2: The balanced equation
FeS + 2 HCl → H2S + FeCl2
Step 3: Calculate moles FeCl2
Moles FeCl2 = 326 grams / 126.75 grams
Moles FeCl2 = 2.57 moles
Step 4: Calculate moles FeS needed
For 1 mol H2S and 1 mol FeCl2 produced, we need 1 mol FeS and 2 moles HCl
For 2.57 moles FeCl2 we need 2.57 moles FeS
Step 5: Calculate mass FeS
Mass FeS = 2.57 moles * 87.92 g/mol
Mass FeS = 226 grams FeS
We need 226 grams of FeS
We use the osmotic pressure to determine the concentration of the solute in the solution. Then, we multiply the volume of the solution to determine the number of moles of solute particles. We need to establish to equations since we have two unknowns, the mass of of each solute. We do as follows:
osmotic pressure = CRT
<span>C = 7.75 / 0.08205 (296.15) = 0.3189 mol / L</span>
<span>moles of particles = C*V = 0.3189*0.250 =0.0797 mol </span>
<span>0.0797 = moles of sucrose + 2*moles of salt </span>
<span>x + 2y = 0.0797 </span>
<span>and </span>
<span>x(MMsucrose) + y(MMNaCl) = 10.2</span>
<span>342x + 58.5y = 10.2
</span>
<span>solve for x and y
</span>
<span>x = 0.0252 mol sucrose</span>
<span>y = 0.0273 mol NaCl
</span>
<span>mass Sucrose = 0.0252(342) = 8.6184 g </span>
<span>mass NaCl = 0.0273(58.5) = 1.5971 g </span>
<span>% NaCl = (1.5971 / 10.2)*100 = 15.66%</span>
then the electrons and protons would have a even amount of negetive electric charges
Assume there is 100g of the substance at first
Answer:
1.181 × 10²⁴ molecules CO₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
86.34 g CO₂
<u>Step 2: Identify Conversion</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
<u />
= 1.18141 × 10²⁴ molecules CO₂
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.18141 × 10²⁴ molecules CO₂ ≈ 1.181 × 10²⁴ molecules CO₂