Answer:
E_particle = 1,129 10⁻²⁰ J / particle
T= 817.5 K
Explanation:
Energy is a scalar quantity so it is additive, let's look for the total energy of each gas
Gas a
E_a = 2 5000 = 10000 J
Gas b
E_b = 3 8000 = 24000 J
When the total system energy is mixed it is
E_total = E_a + E_b
E_total = 10000 + 24000 = 34000
The total mass is
M = m_a + m_b
M = 2 +3 = 5
The average energy among the entire mass is
E_averge = E_total / M
E_averago = 34000/5
E_average = 6800 J
One mole of matter has Avogadro's number of atoms 6,022 10²³ particles
Therefore, each particle has an energy of
E_particle = E_averag / 6.022 10²³ = 6800 /6.022 10²³
E_particle = 1,129 10⁻²⁰ J / particle
For find the temperature let's use equation
E = kT
T = E / k
T = 1,129 10⁻²⁰ / 1,381 10⁻²³
T = 8.175 102 K
T= 817.5 K
Answer:x=2 and x=3
Explanation:
Given
Potential Energy for a certain mass is

and we know force is given by


For Force to be zero F=0




Therefore at x=2 and x=3 Force on particle is zero.
(a) 
The change in energy of the transferred charge is given by:

where
q is the charge transferred
is the potential difference between the ground and the clouds
Here we have


So the change in energy is

(b) 7921 m/s
If the energy released is used to accelerate the car from rest, than its final kinetic energy would be

where
m = 950 kg is the mass of the car
v is the final speed of the car
Here the energy given to the car is

Therefore by re-arranging the equation, we find the final speed of the car:

Scientists say that it is hard to track how monarch butterflies migrate