1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
10

If your apparatus were to be dropped from a mile above the ground, describe the forces acting upon your apparatus as it fell. Ho

w would those forces change from the moment before the drop, until just before your apparatus hits the ground.
Physics
1 answer:
kvv77 [185]2 years ago
7 0

Answer:

An accelerometer is a tool that measures proper acceleration.[1] Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame;[2] this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards[3] (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.81 m/s2) will measure zero.

Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight.

When two or more accelerometers are coordinated with one another, they can measure differences in proper acceleration, particularly gravity, over their separation in space—that is, the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity is a weak effect and depends on the local density of the Earth, which is quite variable.

Single- and multi-axis accelerometers can detect both the magnitude and the direction of the proper acceleration, as a vector quantity, and can be used to sense orientation (because the direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium (a case in which the proper acceleration changes, increasing from zero). Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.

Explanation:

hope this helps !!!!

You might be interested in
Calculate the current flowing if a charge of 36 kilocoulombs flows in 1 hour.
kupik [55]

Answer:

2hrs and some mins

Explanation:

bc 2×36= 17 =)

3 0
3 years ago
In midair an M = 145 kg bomb explodes into two pieces of m1 = 115 kg and another, respectively. Before the explosion, the bomb w
Daniel [21]

Answer:

v_2=-133.17m/s, the minus meaning west.

Explanation:

We know that linear momentum must be conserved, so it will be the same before (p_i) and after (p_f) the explosion. We will take the east direction as positive.

Before the explosion we have p_i=m_iv_i=Mv_i.

After the explosion we have pieces 1 and 2, so p_f=m_1v_1+m_2v_2.

These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.

Since we know momentum must be conserved we have:

Mv_i=m_1v_1+m_2v_2

Which means (since we want v_2 and M=m_1+m_2):

v_2=\frac{Mv_i-m_1v_1}{m_2}=\frac{Mv_i-m_1v_1}{M-m_1}

So for our values we have:

v_2=\frac{(145kg)(24m/s)-(115kg)(65m/s)}{(145kg-115kg)}=-133.17m/s

5 0
3 years ago
Help me?!?!?!?!?!?!?!?!?!?!?!?!?!
marishachu [46]
The correct field line would be A.
3 0
3 years ago
Read 2 more answers
A 2.5-L tank initially is empty, and we want to fill it with 10 g of ammonia. The ammonia comes from a line with saturated vapor
Alex17521 [72]

Answer:

592.92 x 10³ Pa

Explanation:

Mole of ammonia required = 10 g / 17 =0 .588 moles

We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .

From the relation

PV = nRT

P x 2.5 x 10⁻³ =  .588 x 8.32 x ( 273 + 30 )

P = 592.92 x 10³ Pa

3 0
3 years ago
In an inverse relationship, when one variable increases, the other___
eimsori [14]

Answer:

In an inverse relationship, when one variable increases, the other variable decreases.

Explanation:

Hope this helps! ^^

4 0
3 years ago
Other questions:
  • I’m not sure how to do 30, could someone pls help?
    8·1 answer
  • A 330 μf capacitor is connected in series with a 120 ohm resistor. what is the time constant for the circuit?
    14·1 answer
  • A slice of bread contains about 100 kcal. If specific heat of a person were 1.00 kcal/kg·°C, by how many °C would the temperatur
    6·1 answer
  • Suppose a body has a force of 10 pounds acting on it to the right, 25 pounds acting on it −135° from the horizontal, and 5 pound
    13·1 answer
  • A certain planet has an escape speed . If another planet has twice size and twice the mass of the first planet, its escape speed
    15·2 answers
  • Does voltage flow in a circuit? Explain
    5·1 answer
  • Please help me to add more questions about clones, for my podcast tomorrow​
    10·1 answer
  • A whale comes to the surface to breathe and then dives at an angle 24 degrees to the horizontal surface of the water. The whale
    13·1 answer
  • Due Tomorrow Hellpp plzzzz
    9·1 answer
  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. a proton is released from re
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!