Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
Answer:
a)
, b) 
Explanation:
a) The magnetic force experimented by a particle has the following vectorial form:

The charge of the electron is equal to
. Then, cross product can be solved by using determinants:

The magnetic force is:

b) The charge of the proton is equal to
. Then, cross product has the following determinant:

The magnetic force is:

Explanation:
Make a table, listing the x and y coordinates of each square's center of gravity and its mass. Multiply the coordinates by the mass, add the results for each x and y, then divide by the total mass.

The x-coordinate of the center of gravity is 15/14 a.
The y-coordinate of the center of gravity is 47/42 a.
Answer:
4.3 x 10^16 kg
Explanation:
M = rv^2/G =[90,000 x 5.66^2] / [6.67 x 10^-11]
M = 43,226,446,776,611,694 = 4.3 x 10^16 kg - Ida's mass.
Answer:
176 min
Explanation:
456 g = .456 kg
Specific heat of ice s = 2093 J kg⁻¹
Heat required to raise the temperature by 25 degree
= mass x specific heat x rise in temperature.
= .456 x 2093 x 25
=23860 J
Heat required to melt the ice to make water at zero degree
= mass x latent heat
= .456 x 334 x 10³
=152304 J
Total heat required = 152304 + 23860 = 176164 J .
Time Required = Heat required / rate of supply of heat
= 176164 / 1000
176.16 min