1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !
It should be C. If the object is denser than the fluid, it will sink. If it isn't, it will float
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
Answer:
137200000 watts or 137200 kilowatts
Explanation:
The formula for power is P= dhrg
Where P = Power in watts
d = density of water (1000 kg/m^3)
h = height in meters
r = flow rate in cubic meters per second,
g = acceleration due to gravity of 9.8 m/s^2,
Plugging in the known values,
we get
P = 1000 kg/m^3 * 80 m * 175 m^3/s * 9.8 m/s^2
P = 80000 kg/m^2 * 175 m^3/s * 9.8 m/s^2
P = 14000000 kg m/s * 9.8 m/s^2
P = 137200000 kg m^2/s^3
P = 137200000 watts or 137200 kilowatts
The above figure assumes 100% efficiency which is impossible. A good efficiency would be 90% so the actual power available would be close to 0.90 * 137200 = 123480 kilowatts