<u>Answer:</u> The pH of the solution is 9.71
<u>Explanation:</u>
1 mole of NaOH produces 1 mole of sodium ions and 1 mole of hydroxide ions.
We are given:
pOH of the solution = 7.2
To calculate the pH of the solution, we need to determine pOH of the solution. To calculate pOh of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=5.09\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D5.09%5Ctimes%2010%5E%7B-5%7DM)
Putting values in above equation, we get:

To calculate pH of the solution, we use the equation:

Hence, the pH of the solution is 9.71
Answer:
160 gm
Explanation:
Five times as much water means you can dissolve 5 times as much potassium nitrate 5 x 32 = 160 gm <u> <===== this seems unlikely though as I doubt 32 g of potassium nitrate will dissolve in only 1 cm^3 of water 1 cm^3 of water is only 1 gm of water </u>
Answer:
2HNO3+Ca(OH)2 = Ca(NO3)2+2H2O
Explanation:
The reaction between Nitric acid(HNO3)and Calcium hydroxide(Ca(OH)2) gives Calcium Nitrate( Ca(NO3)2 and Water( H2O)
The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 