Answer & Explanation:
a)
Lenz's law states that the direction of induced electric current is always such that, it opposes the change in magnetic flux.
In a drop ride, the hub on which we sit and are hung to is an electromagnet and there are many such magnets mounted on the columns of the support. what happens is these electromagnets (in support) generate a repulsive magnetic field with respect to the field generated by the hub solenoids. this results in lift generation till the top of ride. reaching the top, the bar solenoids are at their maximum repulsive force. Then the solenoids in column are set current less means electric supply is cut off. this makes you fall under the effect of gravity. by the time you are half way down, column solenoids are turned on again. As the hub solenoid approaches every single electromagnet in supporting columns. Due to change in magnetic field (with respect to lenz's law) an opposing current induces further providing resistance to the fall, this continues until the ride comes to rest completely. This is how it works.
c) In addition, highly compressive springs, dampers, viscous dampers, etc. could be used in its place.
but the above listed cannot provide a differential braking,
have a limited lifecycle,
will provide resistance during lift also,
require higher maintenance
Answer:
The distance away the center of the earthquake is 1083.24 km.
Explanation:
Given that,
Speed of transverse wave = 9.1\ km/s
Speed of longitudinal wave = 5.7 km/s
Time = 71 sec
We need to calculate the distance of transverse wave
Using formula of distance

....(I)
The distance of longitudinal wave
....(II)
From the first equation

Put the value of t in equation (II)




Hence, The distance away the center of the earthquake is 1083.24 km.
Answer:
<h2>
The magnitude of the magnetic is 0.145 T</h2>
Explanation:
Given :
Speed of proton 
Mass of proton
Kg
The force on the proton in magnetic field is given by,

But
(∵ Force is perpendicular to the velocity so
)

When particle enter in magnetic field at the angle of 90° so particle moves in circle
So force is given by,

Where
radius but in our case 0.23 m,
C
By comparing above two equation,


T
Answer:
(a) Angular velocity will be 125.6 rad/sec
(b) Linear velocity will be 144.44 m /sec
(c) Centripetal acceleration = 1849.3031 g
Explanation:
We have given diameter d = 2.30 m
So radius r = 
(a) Speed is given as 1200 rev/min
We know that angular velocity is given by 
(b) Linear speed is given by 
(c) Centripetal acceleration is given by
We know that 
So 
Answer:
Answer:
Bus travels 160 km in 4 hours
Speed of bus = 160/4 = 40 km/hr
Train travels 320 km in 5 hours
Speed of train = 320/5 = 64 km/hr
In one hour, bus travels 40 km and train travels 64 km.
Ratio = 40:64 = 5:8