Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer:
The differences that will be observed are;
1) The Sun will become faint and will no longer be yellow but rather appear white and will no longer be visible (become invisible) by unassisted vision as we can see the Sun today
2) The size of the Sun will shrink to a size comparable to the size of the Earth
3) The Sun will cool down and will no longer radiate as much heat
4) The nuclear reactions that generate energy on the Sun's will seize and the and the heat from the Sun will be from residual thermal energy
5) The core, which is the hottest part of the Sun will no longer be hydrogen but carbon and oxygen
Explanation:
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car

Let d be the breaking distance. It can be calculated using third equation of motion as :

So, the required distance covered by the car is 44.64 m.