Answer:
Explanation:
Homogeneous mixture is a mixture in which the components of the mixture are in the same proportion throughout any sample extracted from the mixture while an heterogeneous mixture is a mixture in which the components of the mixture differ in term of proportion when different samples of the mixture are extracted and compared.
For example, a sandy water will have some parts (usually the bottom) of the mixture with more sand than other parts of the mixture, hence, it (sandy water) is a heterogeneous mixture. While salty and ocean water has it's salt dissolved in the same proportion throughout the water in the mixture, hence salty and/or ocean water is a homogeneous mixture.
Sandy water can be separated by filtration (i.e using a filter paper to separate the sand from the water when the mixture is poured over a filter paper) while salty and ocean water can be separated by distillation (i.e boiling of the mixture so the water molecules can boil and move through a tube as gas or steam into another container where they are cooled and converted back to liquid or water while leaving the solid salt component of the mixture in the boiling tube).
The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g
Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.
Answer:
The answer is 18.12KJ is required to vaporise 48.7 g of dichloromethane at its boiling point
Explanation:
To solve the above question we have the given variable as follows
ΔHvap = heat of vaporisation of dichloromethane per mole = 31.6KJ/mole
However since the heat of vaporisation is the heat to vaporise one mole of dichloromethane, then, for 48.7 grams of dichloromethane, we have.
The number of moles of dichloromethane present = 48.7/84.93 = 0.573 moles
Therefore, the amount of heat required to vaporise 48.7 grams of dichloromethane at its boiling point is 31.6KJ/mole×0.573moles =18.12KJ
Answer:
A. Yes, the substance must be water.
Explanation:
The density of a substance is unique to it. Density is defined the as the amount of substance contained per volume.
One of the ways of identifying a substance is to determine its density. Every matter is known to have their own specific densities. This makes them different from other substances. The density of gold is unique to it and it differs from that of silver.
In fact, water has density of 1.00gcm⁻³. Experimental errors and some little factors must have altered our expected figure. This a case of precision and accuracy in the experiment.