1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
3 years ago
8

4. Which activity would be BEST for prolonged training within your target heart rate zone?

Physics
1 answer:
valina [46]3 years ago
6 0
I am sorry I would answer this questions but I don’t have the options of the heart rates so I can give you the best answer
You might be interested in
Convert the following to relative uncertainties <br>a) 2.70 ± 0.05cm<br>b) 12.02 ± 0.08cm
DENIUS [597]

data which is expressed in form of following way

a = a_o + \Delta a

here in above expression

a_o = true value

\Delta a = uncertainty in the value

now the relative uncertainty is given as

\frac{\Delta a}{a_o}

now by above formula we can say

a) 2.70 ± 0.05cm

here

True value = 2.70

uncertainty = 0.05

Relative uncertainty = \frac{0.05}{2.70} = 0.0185

b) 12.02 ± 0.08cm

here

True value = 12.02

uncertainty = 0.08

Relative uncertainty = \frac{0.08}{12.02} = 0.00665

4 0
3 years ago
In one cycle a heat engine absorbs 450 J from a high-temperature reservoir and expels 290 J to a low-temperature reservoir. If t
Vitek1552 [10]

Answer:

So the ratio will be \frac{T_L}{T_H}=-0.171

Explanation:

We have given heat engine absorbs 450 joule from high temperature reservoir

So Q=450j

As the heat engine expels 290 j

So work done W = 290 J

We know that efficiency \eta =\frac{W}{Q}=\frac{290}{450}=0.6444

It is given that efficiency of the engine only 55 % of Carnot engine

So efficiency of Carnot engine =\frac{0.6444}{0.55}=1.171

Efficiency of Carnot engine is \eta =1-\frac{T_L}{T_H}

1.171 =1-\frac{T_L}{T_H}

\frac{T_L}{T_H}=-0.171

3 0
3 years ago
Read 2 more answers
How is the phenomenon of reflection used in making a kaleidoscope​
dusya [7]

Answer:

The kaleidoscope

Explanation:

gives a number of images formed by reflection from the mirrors inclined to one another. Designers and artists use kaleidoscope to get ideas for new patterns to design wallpapers, jewellery and fabrics.

8 0
3 years ago
An insect 5.25 mm tall is placed 25.0 cm to the left of a thin planoconvex lens. The left surface of this lens is flat, the righ
Zigmanuir [339]

Answer:

(A) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

Explanation:

height of the insect (h) = 5.25 mm = 0.525 cm

distance of the insect (s) = 25 cm

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = -12.5 cm (because it is a planoconvex lens with the radius in the direction of the incident rays)

index of refraction (n) = 1.7

(A) we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{∞} -\frac{1}{-12.5} )

\frac{1}{f} =(0.7)(0 + \frac{1}{12.5} )

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) if the lens is reversed, the radius of curvatures would be interchanged

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = 12.5 cm

we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{12.5} -\frac{1}{∞} )

\frac{1}{f} =(0.7)( \frac{1}{12.5} - 0)

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

7 0
3 years ago
Nearly all liquids and solids are nearly opaque to radiation at nearly all wavelengths. why is that
anastassius [24]
As radiation enters a solid or liquid, the light waves are absorbed and reflected by the atoms. the resulting reflection from an atom can be in any direction and is random. you can understand opacity in terms of the scattering of radiation. The more opaque, the more scattering.

(The truth is far more complicated than this, check out Richard Feynmans lectures on "Quantum Electro Dynamics" to learn the reality of it. )
3 0
3 years ago
Other questions:
  • Which formula is used to calculate average velocity?
    6·1 answer
  • What are materials used in photosynthesis??
    7·1 answer
  • A material that water is not able to move through?
    5·2 answers
  • Idaho Jo is doing physics experiments throughout the solar system. She travels to each planet and shoots a potato straight up in
    15·1 answer
  • If the Sun suddenly turned off, we would not know it until its light stopped coming. How long would that be, given that the Sun
    10·1 answer
  • Two runners start a race. After 2 seconds, they both have the same velocity. If they both started at the same time, how do their
    10·2 answers
  • In Which figure below is the trend line drawn correctly
    5·1 answer
  • A spider accelerates from a standstill to 5m/s in 10s. What is its acceleration?
    5·1 answer
  • What is accerlation due to gravity?? ​
    8·1 answer
  • Which statement is a hypothesis?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!