Answer:
Explanation:
The difference between a bound orbit and an unbound orbit around the sun is that:
An object on a bound orbit pursues the same way around the Sun again and again, while an object on an unbound orbit moves toward the Sun only a single time and afterward stays away forever & never returns.
Distance is speed x time. Half of the trip is 5.8/2 = 2.9hrs.
640 x 2.9 = 1856mi
580 x 2.9 = 1682mi
1856mi+1682mi=3538mi.
You could also calculate her average speed. This is easy since it was divided in two equal time slices. Average Speed = (640+580)/2 = 610mi/hr
Now 610mi/hr x 5.8hrs = 3538mi
Answer:
100.390407
Explanation:
To find acceleration, you would use the formula a=f/m (acceleration equals force divided by mass) and then once you enter those numbers in the formula, a=180/1.793. Then you divide 180 divided by 1.793 which gets you an answer of 100.390407.
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.