To determine the object which could give the greatest impact we will apply the concept of momentum. The object that has the highest momentum will be the object that will impact the strongest. Our values are
Mass of Object A

Velocity of object A

Mass of object B

Velocity of object B

The general formula for momentum is the product between mass and velocity, then

For each object we have then,


Since the momentum of object A is greater than that of object B, then object A will make you feel force upon impact.
a. 46 m/s east
The jet here is moving with a uniform accelerated motion, so we can use the following suvat equation to find its velocity:

where
v is the velocity calculated at time t
u is the initial velocity
a is the acceleration
The jet in the problem has, taking east as positive direction:
u = +16 m/s is the initial velocity
is the acceleration
Substituting t = 10 s, we find the final velocity of the jet:
And since the result is positive, the direction is east.
b. 310 m
The displacement of the jet can be found using another suvat equation
where
s is the displacement
u is the initial velocity
a is the acceleration
t is the time
For the jet in this problem,
u = +16 m/s is the initial velocity
is the acceleration
t = 10 s is the time
Substituting into the equation,

1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

Answer:
2 /s north
Explanation:
Given that,
Velocity due North is 8 m/s and due south is 6 m/s
We need to find the magnitude and the direction of the resulting velocity.
Let North is positive and South is negative. When two velocities are in opposite direction, they adds up. So,

It is positive. So, it is in North direction.