1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
14

At the north magnetic pole the earth’s magnetic field is vertical and has a strength of 0.62 gauss. The earth’s field at the sur

face and further out is approximately that of a central dipole. (a) What is the magnitude of the dipole moment in joules/tesla? (b) Imagine that the source of the field is a current ring on the "equator" of the earth’s metallic core, which has a radius of 3000 km, about half the earth’s radius. How large would the current have to be?
Physics
1 answer:
Anika [276]3 years ago
4 0

Answer:

A) Dipole moment; m = 8.02 x 10^(22) J/T

B) I = 3.51 x 10^(9) A

Explanation:

The components of a magnetic field of a dipole are;

B_r = (μ_o•m/2πr³).cosθ

B_θ = (μ_o•m/4πr³).sin θ

B_Φ = 0

Let's make m the subject in the B_r equation ;

m = (2πr³•B_r)/(μ_o•cosθ)

Where;

B_r is magnetic field = 0.62 Gauss = 6.2 x 10^(-5) T

μ_o is the magnetic constant and has a value of 4π × 10^(−7) H/m

m is magnetic moment.

r is equal to radius of earth =6.371 x 10^(6)m

Thus, if we set θ = 0,we can solve for m as below;

m = (2π(6.371 x 10^(6))³•6.2 x 10^(-5) )/(4π × 10^(−7)•cos0)

Thus, m = 8.02 x 10^(22) J/T

B) Now, to find the current, let's use the expression for the magnetic field on the z-axis of the current ring.

B_z = (μ_o•Ib²/(2(z² + b²/2)^(3/2)))

So, let's set z = R and b = R/2

Thus, we now have;

B_z = (μ_o•I)/(5^(3/2)•R)

Making I the subject, we have;

I = [(5^(3/2)•R)•B_z]/μ_o

Plugging in the relevant values, we have;

I = [(5^(3/2) x 6.371 x 10^(6)) x 6.2 x 10^(-5)]/(4π × 10^(−7))

I = 3.51 x 10^(9) A

You might be interested in
A vertical spring (ignore its mass), whose spring constant is 1070 N/m, is attached to a table and is compressed 0.100 m.
harina [27]

I can not solve the problem if I do not have the mass.

3 0
3 years ago
What words go in the missing blanks?
docker41 [41]
I would say mass, and weight.
8 0
2 years ago
If the accepted value of a wave is 121 m/s, who has the most accurate method of measuring the speed of a wave?
qaws [65]
The answer would be erin out of all of them thank me later :)
5 0
3 years ago
Select all the correct answers.
Anastasy [175]
The ground exerts an equal force on the golf ball
8 0
3 years ago
While standing at the edge of the roof of a building, you throw a stone upward with an initial speed of 5.65 m/s. The stone subs
xxTIMURxx [149]

Answer:

1. 20.54m/s

2. 1.52s

Explanation:

QUESTION 1:

The speed the stone impact the ground is the final speed/velocity, which can be calculated using the formula:

v² = u² + 2as

Where;

v = final velocity (m/s)

u = initial velocity (m/s)

a = acceleration due to gravity (m/s²)

s = distance (m)

From the provided information, u = 5.65m/s, v = ?, s = 19.9m, a = 9.8m/s²

v² = 5.65² + 2 (9.8 × 19.9)

v² = 31.9225 + 2 (195.02)

v² = 31.9225 + 390.04

v² = 421.9625

v = √421.9625

v = 20.5417

v = 20.54m/s

QUESTION 2:

Using v = u + at

Where v = final velocity (m/s) = 20.54m/s

t = time (s)

u = initial velocity (m/s) = 5.65m/s

a = acceleration due to gravity (m/s²)

v = u + at

20.54 = 5.65 + 9.8t

20.54 - 5.65 = 9.8t

14.89 = 9.8t

t = 14.89/9.8

t = 1.519

t = 1.52s

3 0
3 years ago
Other questions:
  • Who wanna make friends girls onlyyyy
    9·2 answers
  • There are many types of factors that have an effect on the force of gravity on an elephant. Which factor will LEAST affect the f
    7·2 answers
  • Which statement best describes how waves carry energy?
    11·2 answers
  • I have been given this question
    9·1 answer
  • Why is the melting of ice a physical change?
    6·1 answer
  • What is the equivalent resistance of the circuit?
    9·1 answer
  • How is thermal energy being transferred when steam rises beaker of boiling water?
    14·1 answer
  • It's a frightening idea, but what would be the sound intensity level of 100 physics professors talking simultaneously
    15·1 answer
  • Even though it's not very popular these days, I like our system . Getting together to talk about who the best candidate might be
    14·1 answer
  • Review. Consider the deuterium-tritium fusion reaction with the tritium nucleus at rest:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!