1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darina [25.2K]
3 years ago
13

A plane electromagnetic wave, with wavelength 4.1 m, travels in vacuum in the positive direction of an x axis. The electric fiel

d, of amplitude 310 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this wave? The wave uniformly illuminates a surface of area 1.8 m2. If the surface totally absorbs the wave, what are (g) the rate at which momentum is transferred to the surface and (h) the radiation pressure?
Physics
1 answer:
marusya05 [52]3 years ago
8 0

(a) 7.32\cdot 10^7 Hz

The frequency of an electromagnetic waves is given by:

f=\frac{c}{\lambda}

where

c=3.0\cdot 10^8 m/s is the speed of light

\lambda=4.1 m is the wavelength of the wave in the problem

Substituting into the equation, we find

f=\frac{3.0\cdot 10^8 m/s}{4.1 m}=7.32\cdot 10^7 Hz

(b) 4.60\cdot 10^8 rad/s

The angular frequency of a wave is given by

\omega = 2\pi f

where

f is the frequency

For this wave,

f=7.32\cdot 10^7 Hz

So the angular frequency is

\omega=2\pi(7.32\cdot 10^7 Hz)=4.60\cdot 10^8 rad/s

(c) 1.53 m^{-1}

The angular wave number of a wave is given by

k=\frac{2\pi}{\lambda}

where

\lambda is the wavelength of the wave

For this wave, we have

\lambda=4.1 m

so the angular wave number is

k=\frac{2\pi}{4.1 m}=1.53 m^{-1}

(d) 1.03\cdot 10^{-6}T

For an electromagnetic wave,

E=cB

where

E is the magnitude of the electric field component

c is the speed of light

B is the magnitude of the magnetic field component

For this wave,

E = 310 V/m

So we can re-arrange the equation to find B:

B=\frac{E}{c}=\frac{310 V/m}{3\cdot 10^8 m/s}=1.03\cdot 10^{-6}T

(e) z-axis

In an electromagnetic wave, the electric field and the magnetic field oscillate perpendicular to each other, and they both oscillate perpendicular to the direction of propagation of the wave. Therefore, we have:

- direction of propagation of the wave --> positive x axis

- direction of oscillation of electric field --> y axis

- direction of oscillation of magnetic field --> perpendicular to both, so it must be z-axis

(f) 127.5 W/m^2

The time-averaged rate of energy flow of an electromagnetic wave is given by:

I=\frac{E^2}{2\mu_0 c}

where we have

E = 310 V/m is the amplitude of the electric field

\mu_0 is the vacuum permeability

c is the speed of light

Substituting into the formula,

I=\frac{(310 V/m)^2}{2(4\pi\cdot 10^{-7} H/m) (3\cdot 10^8 m/s)}=127.5 W/m^2

(g) 1.53\cdot 10^{-8} kg m/s

For a surface that totally absorbs the wave, the rate at which momentum is transferred to the surface given by

\frac{dp}{dt}=\frac{A}{c}

where the <S> is the magnitude of the Poynting vector, given by

=\frac{EB}{\mu_0}=\frac{(310 V/m)(1.03\cdot 10^{-6} T)}{4\pi \cdot 10^{-7}H/m}=254.2 W/m^2

and where the surface is

A = 1.8 m^2

Substituting, we find

\frac{dp}{dt}=\frac{(254.2 W/m^2)(1.8 m^2)}{3\cdot 10^8 m/s}=1.53\cdot 10^{-8} kg m/s

(h) 8.47\cdot 10^{-7} N/m^2

For a surface that totally absorbs the wave, the radiation pressure is given by

p=\frac{}{c}

where we have

=254.2 W/m^2

c=3\cdot 10^8 m/s

Substituting, we find

p=\frac{254.2 W/m^2}{3\cdot 10^8 m/s}=8.47\cdot 10^{-7} N/m^2

You might be interested in
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They
timama [110]

Answer:

c. 48 cm/s/s

Explanation:

Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?

from newtons second law of motion ,

which states that change in momentum is directly proportional to the force applied.

we can say that

f=m(v-u)/t

a=acceleration

t=time

v=final velocity

u=initial velocity

since a=(v-u)/t

f=m*a

force applied is F

m =mass of the object involved

a is the acceleration of the object involved

f=m*48.........................1

in the second case ;a mass of 2M when acted upon by a net force of 2F

f=ma

a=2F/2M

substituting equation 1

a=2(M*48)/2M

a=. 48 cm/s/s

6 0
3 years ago
Due to efficiency considerations related to its bow wake, the supersonic transport aircraft must maintain a cruising speed that
givi [52]

Answer:

decreases.

Explanation:

When the aircraft is flies from the warm air into the  colder air then its speed will be decreases.

as we know that

we know mach number is constant  

so that here Mach number M is expressed as  

M = \frac{u}{v}      .............................1

here u is  Local flow velocity with respect to the boundarie and v is the speed of sound in the medium

If the aircraft flies from hot air to cold air, the speed of sound in the medium will decrease. But the Mach number remains constant. Therefore, the local flow velocity relative to the boundaries also decreases.

7 0
3 years ago
Theories have both an explanatory and a predictive function. <br> a. True <br> b. False
Simora [160]
Theories have both an explanatory an a predictive function. True
3 0
3 years ago
Read 2 more answers
Seafloor spreading occurs because why?
maks197457 [2]
Seafloor spreading<span> is a process that </span>occurs<span> at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. </span>Seafloor spreading<span> helps explain continental drift in the theory of plate tectonics.

Hope this helps</span>
8 0
3 years ago
Read 2 more answers
The 3rd bright fringe of a double slit interference pattern is 30.0 cm above the central bright fringe. If the angle from the ho
Anastasy [175]

Answer:

Explanation:

12 degree = (π / 180) x 12 radian

= .2093 radian

position of third bright fringe = 3λ D/ d where λ is wave length of light , D is screen distance and d is slit separation

given

3λ D/ d = 30 x 10⁻²

angular separation

3λ / d = .2093

from the two equation

.2093 D= 30 x 10⁻²

D = 30 x 10⁻² / .2093

= 1.43 m

5 0
3 years ago
Other questions:
  • How fast can the 140 a current through a 0.200 h inductor be shut off if the induced emf cannot exceed 80.0 v?
    6·1 answer
  • Is sharpening a pencil a physical change or chemical change
    15·2 answers
  • A girl tries to jump over a 0.825 m
    6·1 answer
  • Which of these ideas was part of the earliest model of the atom?
    14·2 answers
  • Un cañón de electrones dispara electrones (q = -e, me = 9.1 × 10 -31 kg) hacia una placa metálica que está a 4.0 mm de distancia
    7·1 answer
  • The first step of the scientific method is
    7·2 answers
  • Using the midpoint and the distance formulas, calculate he coordinate of the midpoint and the length of the segment.
    12·1 answer
  • Plate] term 3 quiz 1 physics grade 9
    8·1 answer
  • A 9 V battery produces a current of 18 amps. What is the resistance?
    7·1 answer
  • an airplane is moving at a speed of 75 m/s. as it. lands on a. runwsys. if. the runway is. 500m long, what is the acceleration o
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!