Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
The weight of air resting on a surface, divided by the area
of the surface ... described in units of force per unit area ...
is called air pressure.
Answer:
Explanation:
Given that,
Mass of block
M = 2kg
Spring constant k = 300N/m
Velocity v = 12m/s
At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0
xo = 0
It velocity is 12m/s at t=0
Then, it initial velocity is
Vo = 12m/s
Then, amplitude is given as
A = √[xo + (Vo²/ω²)]
Where
xo is the initial amplitude =0
Vo is the initial velocity =12m/s
ω is the angular frequency and it can be determine using
ω = √(k/m)
Where
k is spring constant = 300N/m
m is the mass of object = 2kg
Then,
ω = √300/2 = √150
ω = 12.25 rad/s²
Then,
A = √[xo + (Vo²/ω²)]
A = √[0 + (12²/12.5²)]
A = √[0 + 0.96]
A = √0.96
A = 0.98m