Answer:

Explanation:
The water droplet is initially neutral, it will obtain a 40 nC of charge when a charge of -40 nC is removed from the water droplet.
The charge on one electron, 
Let the N number of electrons have charge -40 nC, such that,
Now, mass of one electron = 
Therefore, mass of N electrons = 
It is the mass of the of the water droplet that must be removed in order to obtain a charge of 40 nC.
Let it is m times the total mass of the droplet which is 
Then,

It is the required fraction of mass of the droplet.
I don't know what this question is asking but this statement is false because venus is a planet made of hot gas that cannot be landed on. So venus has not been explored by rovers. (However Mars has been explored by rovers)