That is a vector. It is a combination of direction and velocity. (You can think of Vector from Despicable Me to help you remember the term)
:)
1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
Answer:
Explanation:
mass of 1 L water = 1 kg .
200⁰F = (200 - 32) x 5 / 9 = 93.33⁰C .
260.928 K = 260.928 - 273 = - 12.072⁰C .
water is at higher temperature .
Let the equilibrium temperature be t .
Heat lost by water = mass x specific heat x fall of temperature
= 1 x 4.2 x 10³ x ( 93.33 - t )
Heat gained by copper
= .25 x .385 x 10³ x ( t + 12.072 )
Heat lost = heat gained
1 x 4.2 x 10³ x ( 93.33 - t ) = .25 x .385 x 10³ x ( t + 12.072 )
93.33 - t = .0229 ( t + 12.072)
93.33 - t = .0229 t + .276
93.054 = 1.0229 t
t = 90.97⁰C .
It begins with a kick-off