Answer:
Relative rate of effusion for the orange to blue spheres = 1.531
Explanation:
Rate of effusion of Orange / Rate of effusion of blue = [Mblue / Morange]^1/2
Vrms = sqrt [(3RT/M)]
Vorange / Vblue = [ Mblue / Morange]^1/2
Rate of effusion of Orange / Rate of effusion of blue = 565/ 369 = 1.531
3Ni + Sn3(PO4)2 → Ni3(PO4)2 + 3Sn I think. Not for sure though
Answer:
The mass percent of aluminum sulfate in the sample is 16.18%.
Explanation:
Mass of the sample = 1.45 g

Mass of the precipitate = 0.107 g
Moles of aluminum hydroxide = 
According to reaction, 2 moles of aluminum hydroxide is obtained from 1 mole of aluminum sulfate .
Then 0.001372 moles of aluminum hydroxide will be obtained from:

Mass of 0.000686 moles of aluminum sulfate :
= 0.000686 mol × 342 g/mol = 0.2346 g
The mass percent of aluminum sulfate in the sample:

Answer:
Antoine Lavoisier and Johann Wolfang Döbereiner organized the elements based on properties such as how the elements reacts or whether they are solid or liquid.
Explanation:
The periodic table of the elements as we have it today was developed as a result of the work of several notable centuries who lived centuries apart, all of who made notable contributions to development of the modern periodic table in use today.
In 1789, Antoine Lavoisier, a French Chemist provided a definition of elemets which he defined as a substance whose smallest units cannot be broken down into a simpler substance. He further grouped the elements into two as metals and nonmetals.
In 1829, German physicist Johann Wolfang Döbereiner arranged elements in groups of three in increasing order of atomic weight and called them triads. His arrangement owasf elements into triads was based on his observation of similarities in physical and chemical properties of certain elements.
John Newlands, a British Chemist was the first to arrange the elements into a periodic table with increasing order of atomic masses.
In 1869, Russian chemist Dmitri Mendeleev developed a periodic table which provided a framework the modern periodic table. He arranged the elements according to their atomic weight, leaving gaps for elements that were yet to be discovered.
The modern periodic table arranges elements based on increasing atomic number.