I think the answer is B. the sum of the enthalpy changes of the intermidiate reactions
The average relative atomic mass of a sample containing 100 atoms of X, 70 were found to be 9X while 30 were 11X isotopes is 9.6g.
<h3>What is Atomic mass? </h3>
Atomic mass is defined as the whole mass of an atom.
It is also defined as the sum of atomic number and number of neutrons.
Atomic mass = Atomic number + neutrons
<h3>What is Isotopes?</h3>
Isotopes are the those element which have same atomic number but have different mass number and number of neutrons.
The average relative atomic mass can be calculated as
mass of isotopes/ mass of sample
mass of all isotopes = (70 × 9X) + (30 × 11X)
=(630 + 330) X
= 960X
Average relative atomic mass = 960X/ 100 X
= 9.6 g
Thus, we concluded that the average relative atomic mass of a sample containing 100 atoms of X, 70 were found to be 9X while 30 were 11X isotopes is 9.6g.
learn more about atomic mass:
brainly.com/question/14250653
#SPJ9
2 boxes of A
Because C = A + B
2 of A = 20 grams
at the other hand we have 2 of B = 10
So 20 + 10 = 30 grams
Answer:
The amount of water converted from liquid to gas with 6,768 joules is approximately 3.035 g
Explanation:
The amount of heat required to convert a given amount of liquid to gas at its boiling point is known as the latent heat of evaporation of the liquid
The latent heat of evaporation of water, Δ
≈ 2,230 J/g
The relationship between the heat supplied, 'Q', and the amount of water in grams, 'm', evaporated is given as follows
Q = m × Δ
Therefore, the amount of water, 'm', converted from liquid to gas at the boiling point temperature (100°C), when Q = 6,768 Joules, is given as follows;
6,768 J = m × 2,230 J/g
∴ m = 6,768 J /(2,230 J/g) ≈ 3.035 g
The amount of water converted from liquid to gas with 6,768 joules = m ≈ 3.035 g.
Answer:
proton. neutrons and electrons