Answer: Hello the compound is missing but I was able to get the Full question and missing compound . ( compound = copper sulfate )
<em>answer</em> : statement ; 2 , 3 and 5
Explanation:
The true statements regarding the coordination compound ( copper sulfate ) are :
- The ligand must have at least one unshared pair of valence electrons in order to covalently bond with transition metal in the coordination compound ( statement 2 )
- Ethanol was used during crystallization of the coordination compound because the compound is soluble in ethanol ( statement 3 )
- The colors of many coordination compounds are the result of light absorption by the d electrons on the transition metal ( statement 5 )
During the coordination of compounds dative bonds exits between the transition metals and the Ligands molecules
Explanation:
Both cohesion and molecular interchange contribute to liquid viscosity. The impact of increasing the temperature of a liquid is to reduce the cohesive forces while simultaneously increasing the rate of molecular interchange. The former effect causes a decrease in the shear stress while the latter causes it to increase.
temperature?
The viscosity of liquids decreases rapidly with an increase in temperature, and the viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow more easily, whereas gases flow more sluggishly.
mark as brainliest
Answer:
Homogeneous means composed of parts of different kinds; having widely different elements or components.
Explanation:
Answer:The distribution of electrons in an atom is called as Electronic Configuration. Formula 2n2 helps in the determination of the maximum number of electrons present in an orbit, here n= orbit number.
Explanation:
Explanation:
<em>Acidic</em><em> </em><em>radical</em><em> </em>
<em>Acid radical is the ion formed after the removal of Hydrogen ion (H+) from an acid. Example: When H2SO4 loses H+ ion, it forms HSO4− which is an acid radical.</em><em> </em>
<em>Basic</em><em> </em><em>radical</em><em> </em>
<em> The ion formed after the removal of hydroxide ion (OH−) from a base is known as basic radical.</em>