Answer:
a) 0.684
b) 0.90
Explanation:
Catalyst
EO + W → EG
<u>a) calculate the conversion exiting the first reactor </u>
CAo = 16.1 / 2 mol/dm^3
Given that there are two stream one contains 16.1 mol/dm^3 while the other contains 0.9 wt% catalyst
Vo = 7.24 dm^3/s
Vm = 800 gal = 3028 dm^3
hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins
next determine the value of conversion exiting the reactor ( Xai ) using the relation below
KIm = ------ ( 1 )
make Xai subject of the relation
Xai = KIm / 1 + KIm --- ( 2 )
<em>where : K = 0.311 , Im = 6.97 ( input values into equation 2 )</em>
Xai = 0.684
<u>B) calculate the conversion exiting the second reactor</u>
CA1 = CA0 ( 1 - Xai )
therefore CA1 = 2.5438 mol/dm^3
Vo = 7.24 dm^3/s
To determine the value of the conversion exiting the second reactor ( Xa2 ) we will use the relation below
XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )
<em> where : Xai = 0.684 , Im = 6.97, and K = 0.311 ( input values into equation 3 )</em>
XA2 = 0.90
<u />
<u />
<u />
extension lines,sketches,leader lines,dimensions describes all illustrations created by freehand.
Answer:
There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.
Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage. The current will then taper down to a minimum value once that voltage level is reached. The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.
Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating. Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement. This method is suitable for Ni-MH type of batteries. The battery must be disconnected, or a timer function used once charged.
Constant voltage / constant current (CVCC) is a combination of the above two methods. The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level. The current then reduces as the battery becomes fully charged. The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.