Answer:
Impossible.
Explanation:
The ideal Coefficient of Performance is:


The real Coefficient of Performance is:


Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.
Answer:
See explaination and attachment.
Explanation:
Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.
The starting point of the Navier-Stokes equations is the equilibrium equation.
The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.
The second step is to relate the deviatoric stress to viscosity in the fluid.
The final step is to impose any special cases of interest, usually incompressibility.
Please kindly check attachment for step by step solution.
Answer:
Football stadium on rocky soil
Skyscraper on bedrock
Apartment building on sandy soil
Explanation:
Answer:
You can create high drag which allows a steeper angle without increasing your air speed on landing. you can reduce the length of landing role. Flaps are also used to increase the drag they are retracted when they are not needed. it is adviseable to down he flaps during the time of take off.
This question is incomplete, the complete question is;
Determine the design moment strength (ϕMn) for a W21x73 steel beam with a simple span of 18 ft when lateral bracing for the compression flange is provided at the ends only (i.e., Lb = 18 ft). Report the result in kip-ft.
Use Fy=50 ksi and assume Cb=1.0 (if needed).
Answer: the design moment strength for the W21x73 steel beam is 566.25 f-ft
Explanation:
Given that;
section W 21 x 73 steel beam;
now from the steel table table for this section;
Zx = Sx = 151 in³
also given that; fy = 50 ksi and Cb = 1.0
QMn = 0.9 × Fy × Zx
so we substitute
QMn = 0.9 × 50 × 151
QMn = 6795 k-inch
we know that;
12inch equals 1 foot
so
QMn = 6795 k-inch / 12
QMn = 566.25 f-ft
Therefore the design moment strength for the W21x73 steel beam is 566.25 f-ft