Answer:
Δe=0.578 kJ/kg
Explanation:
Given data
Velocity v₁=0 m/s
Velocity v₂=34 m/s
to find
Specific energy change Δe
Solution
The specific energy change is simply determined from change in velocity
Δe=(v₂²-v₁²)/2
Put the given values to find the specific energy change

Δe=0.578 kJ/kg
Answer: Calculate the energy required in joules to raise the temperature of 450 grams of water from 15°C to 85°C? (The specific heat capacity of water is 4.18 J/g/°C)
Explanation:
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Answer:
P = 25299.75 watts
Since 80km/h is the average speed of 92km/h and 68km/h, the power (in watts) is needed to keep the car traveling at a constant 80 km/h is P = 25299.75 watts
Explanation:
Given;
Mass of car m = 1280kg
initial speed v1 = 92km/h = 92×1000/3600 m/s= 25.56m/s
Final speed v2 = 68km/h = 68×1000/3600 m/s= 18.89m/s
time taken t = 7.5s
Change in the kinetic energy of the car within that period;
∆K.E = 1/2 ×mv1^2 - 1/2 × mv2^2
∆K.E = 0.5m(v1^2 -v2^2)
Substituting the values, we have;
∆K.E = 0.5×1280(25.56^2 - 18.89^2)
∆K.E = 189748.16J
Power used during this Change;
Power P = ∆K.E/t
Substituting the values;
P = 189748.16/7.5
P = 25299.75 watts
Since 80km/h is the average speed of 92km/h and 68km/h, the power (in watts) is needed to keep the car traveling at a constant 80 km/h is P = 25299.75 watts