I believe the answer is energy
Answer:

Explanation:
Given that,
Pressure, P = 1 atm = 101325 Pa
Area of the square surface, A = 10² = 100 m²
We need to find the mass of vertical column of air. We know that, pressure is equal to the force acting per unit area. So,

So, the required mass of the vertical column of air is
.
Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :

Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)
Convert 220 lb to kg.
220/2.2 = 100kg.
W = Fd (In this case, F is the weight)
W = (100)(2)
W = 200J
P = W/t
P = (200)/(1.2)
P = 166.67W