Answer: 
Explanation:
According to Newton's law of universal gravitation:
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have two situations:
1) Two bags with masses
and
mutually exerting a gravitational attraction
on each other:
(1)
(2)
(3)
2) Two bags with masses
and
mutually exerting a gravitational attraction
on each other (assuming the distance between both bags is the same as situation 1):
(4)
(5)
(6)
Now, if we isolate
from (3):
(7)
Substituting
found in (7) in (6):
(8)
(9)
Simplifying, we finally get the expression for
in terms of
:
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s .The amplitude of the subsequent oscillations 48.13 cm/s
a 1.25 kilogram block is fastened to a spring with a 17.0 newtons per meter spring constant. Given that K is equal to 14 Newtons per meter and mass equals 10.5 kg. The block is then struck with a hammer by a student while it is at rest, giving it a speedo of 46.0 cm for a brief period of time. The required energy provided by the hammer, which is half mv squared, is transformed into potential energy as a result of the succeeding oscillations. This is because we know that energy is still available for consultation. So access the amplitude here from here. He will therefore be equal to and by. Consequently, the Newton's spring constant is 14 and the value is 10.5. The velocity multiplied by 0.49
Speed at X equals 0.35 into amplitude, or vice versa. At this point, the spirit will equal half of K X 1 squared plus half. Due to the fact that this is the overall energy, square is equivalent to half of a K square or an angry square. amplitude is 13 and half case 14 x one is 0.35. calculate that is equal to initial velocities of 49 squares and masses of 10.5. This will be divided in half and start at about 10.5 into the 49-square-minus-14. 13.42 into the entire square in 20.35. dividing by 10.5 and taking the square as a result. 231 6.9 Six centimeters per square second. 10.5 into 49 sq. 14. 2 into a 13.42 square entire. then subtract 10.5 from the result to get the square. So that is 48.13cm/s.
To learn more about oscillations Please click on the given link:
brainly.com/question/26146375
#SPJ4
This is incomplete question Complete Question is:
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s . what are The amplitude of the subsequent oscillations?
Answer:
Physical Properties of Sodium
Atomic number 11
Melting point 97.82°C (208.1°F)
Boiling point 881.4°C (1618°F)
Volume increase on melting 2.70%
Latent heat of fusion 27.0 cal/g
Lenntech Water treatment & purification
Toggle navigation
Home Periodic table Elements Sodium
Sodium - Na
Chemical properties of sodium - Health effects of sodium - Environmental effects of sodium
Atomic number
11
Atomic mass
22.98977 g.mol -1
Electronegativity according to Pauling
0.9
Density
0.97 g.cm -3 at 20 °C
Melting point
97.5 °C
Boiling point
883 °C
Vanderwaals radius
0.196 nm
Ionic radius
0.095 (+1) nm
Isotopes
3
Electronic shell
[Ne] 3s1
Energy of first ionisation
495.7 kJ.mol -1