Explanation:
The Net Force of the object can be written by:
Fnet = ma
where m is the mass of the object in <em>kg</em>
a is the acceleration of the object in <em>m/s^2</em>
Hence by applying the formula we get:
Fnet = (2.0)(3.0)
= 6N
We also know that Net force is also the sum of all forces acting on an object. In this case Friction and the Pushing Force is acting on the object. Hence we can write that:
Fnet = Pushing Force + (-Friction)
6N = 6N - Friction
Friction = 0N
Hence the<u> </u><u>f</u><u>orce of friction is 0N.</u>
Answer:

Explanation:
Given that
Height = h
Radius = R
From energy conservation

At point B
The minimum speed to complete the the circle

So the kinetic energy at point B




Without falling off at the top (point B)




Answer:
Explanation:
(b) The initial velocity is added to that due to acceleration by gravity. The velocity is increased linearly by gravity at the rate of 9.8 m/s². The average velocity of the pebble will be its velocity halfway through the 2-second time period.* That is, it will be ...
4 m/s + (9.8 m/s²)(2 s)/2 = 13.8 m/s . . . . average velocity
__
(a) The distance covered in 2 seconds at an average velocity of 13.8 m/s is ...
d = vt
d = (13.8 m/s)(2 s) = 27.6 m
The water is about 27.6 m below ground.
_____
* We have chosen to make use of the fact that the velocity curve is linear, so the average velocity is half the sum of initial and final velocities:
vAvg = (vInit + vFinal)/2 = (vInit + (vInit +at))/2 = vInit +at/2
__
If you work this in a straightforward way, you would find distance as the integral of velocity, then find average velocity from the distance and time.

Answer:
Explanation:
Force between two charges of q₁ and q₂ at distance d is given by the expression
F = k q₁ q₂ / d₂
Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm
k = 1/ 4π x 8.85 x 10⁻¹²
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 35969.4 x 10⁻³ N .
force between charge q₂ = 34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 82729.6 x 10⁻³ N
Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)
Total force = 118699 x 10⁻³
= 118.7 N.