Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s
Answer: Earth scientists have theorized that the Earth's core is responsible for the planet's magnetic field as well as plate tectonics.
Explanation:
Answer:
y_red / y_blue = 1.11
Explanation:
Let's use the constructor equation to find the image for each wavelength
1 /f = 1 /o + 1 /i
Where f is the focal length, or the distance to the object and i the distance to the image
Red light
1 / i = 1 / f - 1 / o
1 / i_red = 1 / f_red - 1 / o
1 / i_red = 1 / 19.57 - 1/30
1 / i_red = 1,776 10-2
i_red = 56.29 cm
Blue light
1 / i_blue = 1 / f_blue - 1 / o
1 / i_blue = 1 / 18.87 - 1/30
1 / i_blue = 1,966 10-2
i_blue = 50.863 cm
Now let's use the magnification ratio
m = y ’/ h = - i / o
y ’= - h i / o
Red Light
y_red ’= - 5 56.29 / 30
y_red ’= - 9.3816 cm
Light blue
y_blue ’= 5 50,863 / 30
y_blue ’= - 8.47716 cm
The ratio of the height of the two images is
y_red ’/ y_blue’ = 9.3816 / 8.47716
y_red / y_blue = 1,107
y_red / y_blue = 1.11
Answer:
Recoil speed,
Explanation:
Given that,
Mass of the comet fragment, 
Speed of the comet fragment, 
Mass of Callisto, 
The collision is completely inelastic. Assuming for this calculation that Callisto's initial momentum is zero. So,

V is recoil speed of Callisto immediately after the collision.

So, the recoil speed of Callisto immediately after the collision is 