Answer:
It is an example of coupling an exogenic reaction to an endogenic reaction.
Explanation:
The endergonic reaction is typically being pushed by coupling it to strongly exergonic reaction. This is in most cases via shared intermediates. Most chemical reactions are endergonic in nature. In other word, the are not spontaneous (i.e ΔG>0). Energy must also be applied externally to initiate the reactions. The reactions can also be coupled to exergonic reactions (with ΔG<0) to initiate them through a process known as share intermediate. Because Gibbs Energy can be summed up (i.e is a state function), the combined ΔG of the coupled reaction will be thermodynamically favorable. The decomposition of calcium carbonate is a typical example.
Answer:
1. HBr>HCl> H2S >BH3
2.K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Explanation:
As one goes down a row in the Periodic Table the properties that determine the acid strength can be observed.
The atoms get larger in radius meaning that in strength, the strength of the bonds get weaker, conversely meaning that the acids get stronger.
For the halogen-containing acids above following the rows and periods, HBr has the strongest bond and is the strongest acid and others follow in this order.
HBr>HCl> H2S >BH3
Acid Dissociation Constant provides us with information known as the ionization constant which comes in handy to measure the acid's strength. The meaning of the proportions are thus, the higher the Ka value, the stronger the acid i.e. it liberates more number of hydrogen ions per mole of acid in solution.
In solution strong acids completely dissociate hence, the value of dissociation constant of strong acids is very high.
Following the cues above on Ka;
K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Answer:
Reactants are what you start with
Explanation:
Reactants are what you start with, the product is what you end with! :)
Answer:
4- radioactive isotopes
Explanation:
I don't remember exactly but this question was on the regents