a)You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.
from above statement we got
height = 78.4 m
since the ball is thrown, so its vertical velocity would be zero
u = 0
taking g = 9.8m/s^2
now, using the equation of motion
h = ut + gt^2/2
now putting all the values in it
we got ,
78.4 = 9.8 * t^2/ 2
by solving we got,
t = 4 sec
b) now, since along the horizontal , no force acting and accelaration is zero so
R = ut , R is RANGE
R = 5 * 4
range = 20 m
c) vertical components of the stone’s velocity just before it hits the ground = v sin θ =
horizontal components of the stone’s velocity just before it hits the ground = v cos θ
To know more about velocity visit :
brainly.com/question/18084516
#SPJ9
The lens' focal length is 1.5 cm, and its focal length is equal to half its radius of curvature, as shown by the formula f=R2 f = R 2, where f seems to be the focal length as well as R is indeed the radius of curvature.
<h3>What does focal length mean?</h3>
When a lens is focussed at infinity, the focal length of the lens is discovered. We can determine the angle of view, or the amount of the scene will be caught, and the magnification, or how big the individual elements will be, by measuring the focal length of the lens. A narrower field of view and a higher magnification result from a longer focal length.
<h3>How do focal length or wavelength work?</h3>
As wavelength and refractive index are inversely connected, the focal length of a lens varies inversely with each of them. The focal length of a lens varies directly with wavelength of light employed. The main reason chromatic aberration occurs is due to this. No relationship exists between the focal length and the frequency of a light.
To know more about focal length visit:
brainly.com/question/16188698
#SPJ4
Answer:
0.66 m/s
Explanation:
This is an inelastic collision, for that reason the conservation of momentum law allows us to determine the final velocity of both, the bullet and block together after the collision:

Answer:
Time will be 5 sec
And maximum height will be 1200 feet
Explanation:
We have given that initial velocity of the object u = 160 ft/sec'
Function of height 
Take derivative of the distance
We know that first derivative of distance is velocity
So 
At maximum height we know that velocity is zero
So 
t = 5 sec
So it will take 5 sec to reach maximum height
Now maximum height will occur at t = 5 sec
So maximum height = 