Answer:
Theoretical yield of vanadium = 1.6 moles
Explanation:
Moles of
= 1.0 moles
Moles of
= 4.0 moles
According to the given reaction:-

1 mole of
react with 5 moles of 
Moles of Ca available = 4.0 moles
Limiting reagent is the one which is present in small amount. Thus, Ca is limiting reagent. (4.0 < 5)
The formation of the product is governed by the limiting reagent. So,
5 moles of Ca on reaction forms 2 moles of V
1 mole of Ca on reaction for 2/5 mole of V
4.0 mole of Ca on reaction for
mole of V
Moles of V = 1.6 moles
<u>Theoretical yield of vanadium = 1.6 moles</u>
No, they do not. Carbon dioxide has a linear geometry because the lone pair and bond pair repulsion cancels out; however, water has a bent structure because only the oxygen atom possesses a lone pair which brings the bonding electron pairs closer.
<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 104.1 x 478 / 88.2
<span> V2 =564.17 cm^3</span>
The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
A solution is prepared by dissolving biphenyl into naphthalene. We can calculate the freezing point depression (ΔT) for naphthalene using the following expression.

where,
- i: van 't Hoff factor (1 for non-electrolytes)
- Kf: cryoscopic constant
- m: molality
The normal freezing point of naphthalene is 80.26 °C. The freezing point of the solution is:

The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
Learn more: brainly.com/question/2292439