Explanation:
It is given that vapor pressure of liquid iodomethane is 40.0 mm Hg. So, if we calculate the vapor pressure according to the given values and if its value will be greater than the the given vapor pressure of iodomethane then it means that some of the vapors has converted into liquid state.
As the given values are as follows.
= 72.0 mm Hg,
= 404 K
= ? ,
= 249 K
As volume is constant so, according to Gay-Lussac's law pressure is directly proportional to temperature.
(at constant volume)
or,
= k
Therefore, the formula to calculate the value of
is as follows.
= 
= 
= 44.37 mm Hg
As calculated vapor pressure is more than the given vapor pressure. Hence, the liquid will convert into gas.
As a result, no condensation will occur and only vapors of iodomethane will be present.
Planets move slower when they are furthest from the sun. But when they are closer they move faster because of the gravitational pull of the Sun.
Hope this helps.
Answer: Freezing point of a solution will be 
Explanation:
Depression in freezing point is given by:

= Depression in freezing point
i= vant hoff factor = 1 (for non electrolyte)
= freezing point constant = 
m= molality

Weight of solvent (benzene)= 1480 g =1.48 kg
Molar mass of solute (octane) = 114.0 g/mol
Mass of solute (octane) = 220 g



Thus the freezing point of a solution will be 
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Density
=mass÷volume
=277÷38
=7.29 g/cm3