The force is applied to the accelerating object that has a constant mass. Option A is correct.
<h3>
What does Newton's second law of motion state?</h3>
The force applied to the object is the product of its mass and acceleration.

Where,
- force
- mass
- acceleration
From the equation, the force and the acceleration are in a proportional relation. The mass is not changing as given in the question.
Therefore, the force is applied to the accelerating object that has a constant mass.
Learn more about Acceleration:
brainly.com/question/2437624
Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
Answer:
the one with a higher mass
Explanation:
The body with more mass will have the greater kinetic energy of the two.
Kinetic energy is the energy due to the motion of body. It is mathematically expressed as:
K.E =
m v²
m is the mass
v is the velocity
Since the velocity of the two bodies are the same, and mass is directly proportional to kinetic energy, the body with more mass will have a higher kinetic energy.
So between mass m1 and mass m2, the one with a greater mass will have a higher kinetic energy
Answer:
Explained
Explanation:
You should throw your boot in the direction away from the closest shore so that the reaction force is towards the closest shore.
Answer: The box was moving with a velocity of 0.256m/s when it hit the spring
Explanation: Please see the attachments below