Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec
Explanation:
Displacement=Velocity×time
=24.7×16.00
=395.2m
Therefore the displacement within the time interval is 395.2m
Answer: c opinion is something ppl just suggest but a theory needs proof before it is confirmed
My calculator is about 1cm thick, 7cm wide, and 13cm long.
Its volume is (length) (width) (thick) = (13 x 7 x 1) = 91 cm³ .
The question wants me to assume that the density of my calculator
is about the same as the density of water. That doesn't seem right
to me. I could check it easily. All I have to do is put my calculator
into water, watch to see if sinks or floats, and how enthusiastically.
I won't do that. I'll accept the assumption.
If its density is actually 1 g/cm³, then its mass is about 91 grams.
The choices of answers confused me at first, until I realized that
the choices are actually 1g, 10² g, 10⁴ g, and 10⁶ g.
My result of 91 grams is about 100 grams ... about 10² grams.
Your results could be different.
Answer:height above ground at which projectile have velocity
0.5v is (0.0375v^2)
Explanation:
Using Vf = Vi - gt
Where Vf is final velocity
Vi is initial velocity
g is the acceleration due to gravity
t is the time taken
So, 0.5v = v - gt
t = 0.05v
Therefore height h = vt - 0.5gt^2
Subtitute t
h = 0.05v^2 - 0.0125v^2
h = 0.0375v^2