Answer:
The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
Explanation:
The chew toy is at equilibrium and experimenting three forces from three distinct dogs. The Free Body Diagram depicting the system is attached below. By Newton's Laws we construct the following equations of equilibrium: (<em>Sp</em> is for Spot, <em>F</em> is for Fido and <em>St</em> is for Steinberg) All forces and angles are measured in newtons and sexagesimal degrees, respectively:
(1)
(2)
If we know that
,
and
, then the components of the force done by Steinberg on the chewing toy is:





The magnitud of the force is determined by Pythagorean Theorem:



Since the direction of this force is in the 3rd Quadrant on Cartesian plane, we determine the direction of the force with respect to the eastern semiaxis:


The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
Assuming the power delivered by the horse does not change, the speed of the cart will decrease.
In fact, the power delivered by the horse is the work done by the horse (W) per unit time (t):

<span>If several bags are added to the cart, the horse must do more work to transport them. Therefore, W in the fraction increases. But if the power P of the horse is constant, then it means that the time t must increase as well. So, the horse will take more time to transport the car, and this means that the speed of the cart has decreased.</span>