1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
2 years ago
13

Which statement best explains the difference between greenhouse gases and other atmospheric gases?(1 point)

Physics
1 answer:
Dmitriy789 [7]2 years ago
3 0

Greenhouse gases trap thermal energy and reflect the sun’s harmful radiation back to Earth is the answer

im not 100% sure tho

hope it helps:))

You might be interested in
A toroid having a square cross section, 5.00 cm on a side, and an inner radius of 15.0 cm has 500 turns and carries a current of
SCORPION-xisa [38]

Answer:

a).β=0.53x10^{-3} T

a).β=0.40 x10^{-4} T

Explanation:

The magnetic field at distance 'r' from the center of toroid is given by:

\beta =\frac{u_{o}*I*N}{2\pi*r}

a).

N=500\\I=0.800A\\r=15cm*\frac{1m}{100cm}=0.15m\\u_{o}=4\pi x10^{-7}\frac{T*m}{A}  \\\beta=\frac{4\pi x10^{-7}\frac{T*m}{A}*0.8A*500}{2\pi*0.15m} \\\beta=0.53x10^{-3}T

b).

The distance is the radius add the cross section so:

r_{1}=15cm+5cm\\r_{1}=20cm

r_{1} =20cm*\frac{1m}{100cm}=0.20m

\beta =\frac{u_{o}*I*N}{2\pi*r1}

\beta =\frac{4\pi x10^{-7}*0.80A*500 }{2\pi*0.20m} \\\beta=0.4x10^{-3} T

3 0
3 years ago
If the density of an object is 5.2 g/cm3, and volume is 3.7 cm3, what is its mass
netineya [11]
Here's the equation you use: Density = mass/volume

1) 5.2g/cm^3 = m/3.7cm^3

2) m = 5.2g/cm^3 x 3.7cm^3

3) m = 19.24g

You can check the answer by plugging it in

19.24g/3.7cm^3
= 5.2g/cm^3
6 0
3 years ago
Read 2 more answers
Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
aliya0001 [1]

Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.

Explanation:

  • Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
  • Let S_{0} be the speed of the river's current given as 1.00 m/s.

  • Note that this speed is the magnitude of the velocity which is a vector quantity.
  • The direction of the swimmer is upstream.

Hence the resultant velocity is given as, S_{R} = S — S 0S_{0}

S_{R} = 1.25 — 1

S_{R} = 0.25 m/s.

Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.

6 0
3 years ago
) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note tha
vaieri [72.5K]

(a) 0.0021 s, 2926.5 rad/s

The frequency of the B note is

f= 466 Hz

The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s

The angular frequency instead is given by

\omega = 2\pi f

And substituting

f = 466 Hz

We find

\omega = 2\pi (466 Hz)=2926.5 rad/s

(b) 20 Hz, 125.6 rad/s

In this case, the period of the sound wave is

T = 50.0 ms = 0.050 s

So the frequency is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz

While the angular frequency is given by:

\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s

(c) 4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s

The minimum angular frequency of the light wave is

\omega_1 = 2.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s

The maximum angular frequency of the light wave is

\omega_2 = 4.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s

(d) 2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s

In this case, the frequency is

f=5.0 MHz = 5.0 \cdot 10^6 Hz

So the period in this case is

T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6  Hz}=2.0 \cdot 10^{-7} s

While the angular frequency is given by

\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s

7 0
3 years ago
A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow
ale4655 [162]

Answer: The riders are subjected to 11.5 revolutions per minute

Explanation: Please see the attachments below

3 0
2 years ago
Other questions:
  • Select the correct answer.
    5·1 answer
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • A thin hoop is supported in a vertical plane by a nail. What should the radius of the hoop be in order for it to have a period o
    5·1 answer
  • The Earth, the Sun, and the rest of the solar system are almost unimaginably old when viewed on a human time scale. While modern
    7·2 answers
  • Brittany stands at rest on a skateboard. The combined mass of Brittany and the skateboard is 62 kg. Dave tosses a 3.7-kg pumpkin
    11·1 answer
  • Which type of stress leads to which type of strain that will lead to which type of surface expression , and cause a reverse faul
    10·1 answer
  • A device is rated at 1.3kW when connected to a 120 V source. The equivalent resistance of this device in ohm is:
    11·1 answer
  • Calculate the weight of the wooden cube.<br>thanks i will rate you 5 star after answer is given...​
    12·1 answer
  • The ____________ is a phenomenon that occurs when electrons are ejected from a piece of metal after light has been shined onto t
    14·1 answer
  • You have a ball with a mass 1.3 kg tied to a rope, and you spin it in a circle of radius 1.8m. If the ball is moving at a speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!