Answer:
D
Explanation:
Metallic character decreases as you move across a period in the periodic table from left to right. This occurs as atoms more readily accept electrons to fill a valence shell than lose them to remove the unfilled shell. Metallic character increases as you move down an element group in the periodic table. This is because electrons become easier to lose as the atomic radius increases, where there is less attraction between the nucleus and the valence electrons because of the increased distance between them.
A catalyst speeds up the rate of reaction so the answer is B.
Answer:
<h3>The answer is 320.75 mL</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>320.75 mL</h3>
Hope this helps you
Answer:
The phrase "opposites attract" is true for atoms. The positively charged ion (cation) and the negatively charged ion (anion) are attracted to each other. It is this attraction, created by the transfer of electrons, that forms the ionic bond. The transfer of one electron creates a single bond.
Explanation:The phrase "opposites attract" is true for atoms. The positively charged ion (cation) and the negatively charged ion (anion) are attracted to each other. It is this attraction, created by the transfer of electrons, that forms the ionic bond. The transfer of one electron creates a single bond.
Answer:
6 x 10⁵ kg Hg
Explanation:
The mass of mercury in the entire lake is found by multiplying the concentration of the mercury by the volume of the lake.
The volume of the lake is calculated in cubic feet:
V = (SA)x(depth) = (100mi²)(5280ft/mi)² x (20ft) = 5.57568 x 10¹⁰ ft³
Cubic feet are then converted to mL (1cm³=1mL)
(5.57568 x 10¹⁰ ft³) x (12in/ft)³ x (2.54cm/in)³ = 1.578856752 x 10¹⁵ mL
The mass of mercury is then found:
m = CV = (0.4μg/mL)(1g/10⁶μg)(1kg/1000g) x (1.578856752 x 10¹⁵ mL) = 6 x 10⁵ kg Hg