Answer:
See explanation
Explanation:
Potassium is a metal. Remember that metals are electropositive in nature. This implies that they give out electrons when they undergo ionic bonding with nonmetals.
Chlorine is a nonmetal. So the bond between chlorine and potassium is ionic. Potassium gives out one electron to chlorine and the both ions now attain a stable octet.
The electronic configuration of potassium is [Ar]4s1. After giving out an electron to chlorine in an ionic bond, its electronic configuration is now [Ar].
Find a periodic table of elements.<span> This is a color-coded table made up of many different squares that lists all of the chemical elements known to humankind. The periodic table reveals lots of information about the elements — we'll use some of this information to determine the number of valence electrons in the atom we're investigating. You can usually find these inside the cover of chemistry textbooks. There is also an excellent interactive table available online </span>here<span>.</span>
The number of moles of the magnesium (mg) is 0.00067 mol.
The number of moles of hydrogen gas is 0.0008 mol.
The volume of 1 more hydrogen gas (mL) at STP is 22.4 L.
<h3>
Number of moles of the magnesium (mg)</h3>
The number of moles of the magnesium (mg) is calculated as follows;
number of moles = reacting mass / molar mass
molar mass of magnesium (mg) = 24 g/mol
number of moles = 0.016 g / 24 g/mol = 0.00067 mol.
<h3>Number of moles of hydrogen gas</h3>
PV = nRT
n = PV/RT
Apply Boyle's law to determine the change in volume.
P1V1 = P2V2
V2 = (P1V1)/P2
V2 = (101.39 x 146)/(116.54)
V2 = 127.02 mL
Now determine the number of moles using the following value of ideal constant.
R = 8.314 LkPa/mol.K
n = (15.15 kPa x 0.127 L)/(8.314 x 290.95)
n = 0.0008
<h3>Volume of 1 mole of hydrogen gas at STP</h3>
V = nRT/P
V = (1 x 8.314 x 273) / (101.325)
V = 22.4 L
Learn more about number of moles here: brainly.com/question/13314627
#SPJ1