Answer:
It does not hit the students face because the speed of the balloon slows down as energy is lost through thermal.
Explanation:
The least number of component of a vector quantity is two. These are the x-component and the y-component.
The resultant vector, or vector as we refer to it in this item, can be calculated through the equation,
RV = sqrt ((Vx)² + (Vy)²)
From the equation, it can be noted that if we let Vx equal to zero,
RV = Vy
Similarly, if we let Vy be equal to zero then,
RV = Vx
Thus, it is still possible for the vector to become nonzero even if one of its components is zero.
Because acceleration is constant, the acceleration of the car at any time is the same as its average acceleration over the duration. So

Now, we have that

so we end up with a distance traveled of


Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
Answer:
The amount of each gas that can dissolve in the ocean depends on the solubility and saturation of the gas in water. Solubility refers to the amount of a dissolved gas that the water can hold under a particular set of conditions, which are usually defined as 0o C and 1 atmosphere of pressure.
Explanation:
hope this helps