<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C
1s^2 2s^2 2p^6 for the Mg2+ ion.
Mg3(AsO4)2
Ca(ClO4)2
[S (II) not sure]
[F (I) not sure]
PO₄³
Sorry I don’t know all of them, good luck though! :)
Answer:
A
Explanation:
since Mg has a charge of +2 and ClO3 has a charge of 1-, you need 2 ClO3 to cancel out the +2 since 2 ClO3 ions would have a 2- charge
Answer:
<u>ATGGCCTA</u>
Explanation:
For this we have to keep in mind that we have a <u>specific relationship between the nitrogen bases</u>:
-) <u>When we have a T (thymine) we will have a bond with A (adenine) and viceversa</u>.
-) <u>When we have C (Cytosine) we will have a bond with G (Guanine) and viceversa</u>.
Therefore if we have: TACCGGAT. We have to put the corresponding nitrogen base, so:
TACCGGAT
<u>ATGGCCTA</u>
<u></u>
I hope it helps!