Answer:
One: <u>Selenium</u> is Paramagnetic
Explanation:
Those compounds which have unpaired electrons are attracted towards magnet. This property is called as paramagnetism. Lets see why remaining are not paramagnetic.
Electronic configuration of Scandium;
Sc = 21 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹
Sc³⁺ = 1s², 2s², 2p⁶, 3s², 3p⁶
Hence in Sc³⁺ there is no unpaired electron.
Electronic configuration of Bromine;
Br = 35 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁵
Br⁻ = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶
Hence in Br⁻ there is no unpaired electron.
Electronic configuration of Magnesium;
Mg = 12 = 1s², 2s², 2p⁶, 3s²
Mg²⁺ = 1s², 2s², 2p⁶
Hence in Mg²⁺ there is no unpaired electron.
Electronic configuration of selenium;
Se = 34 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
Or,
Se = 34 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4px², 4py¹, 4pz¹
Hence in Se there are two unpaired electrons hence it is paramagnetic in nature.
A. 1/2
Explanation- There is a 5/10 chance of choosing on of the numbers which simplifies to 1/2
I was hoping that some choices would be given to choose from. As there are no choices given, so i am answering the question based on my knowledge and hope that it comes to your help. Calcium hydroxide is a good example of Arrhenius base. An Arrhenius base is actually a substance that releases a hydroxyl ion in water.