My answer:
13 group of the periodic table represented by boron, aluminum and gallium subgroup. It includes gallium, indium, thallium. Typical steper oxidation in the subset gallium 3 is explained by the presence of (n-1)d^10 E-configuration.
Aluminium oxidation degree has +3 an electronic configuration of noble gases S^2P^6
Hope this helps yah!!!
The reactions of the human body are exothermic
It would be D
Because a covelant compound forms when 2 non metal atoms bond
The atomic number in an element is usually how many protons the element has. For example, Hydrogen has a 1 on top of the H (on the periodic table), therefore, Hydrogen has 1 proton. Oxygen has an 8 on top of the O (on the periodic table) so therefore, Oxygen has 8 protons.
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>