I got on here because I don't understand the question but I did my best to answer because I noticed you asked 3 days ago. IF I'm right the answer is D. My diagram shows
A at -50 °C
B at 0 °C
C at 50 °C
D at 100 °C (gas to liquid or liquid to gas)
And E at 150 °C
So I hope I'm right because I'm answering the same question.
C. Oxidized and reduced are the same.
Answer:
An exothermic process releases heat, causing the temperature of the immediate surroundings to rise. An ethothermic process absorbs heat and cools the surroundings. Hope this helped.
I think it's B. Molecules collide more frequently
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.