I’m assuming your just writing the formula? If so
Potassium chloride: KCL
Potassium nitride: KNO2
Potassium sulfide: K2S
calcium chloride: CaCl2
Calcium nitride: Ca3N2
Calcium sulfide: CaS
Silver chloride: AgCl
Silver nitride: Ag3N
Silver sulfide: Ag2S
Manganese (||) chloride: MnCl2
Manganese (||) nitride: Mn3N2
Manganese (||) sulfide: MnS
Answer: A 59.5 degree celcius
The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant = 0.0821
T is the temperature required (calculated in kelvin)
Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin
The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius
<h3><u>Answer;</u></h3>
2, Blank, 2 ;
<h3><u>Explanation;</u></h3>
The balanced chemical equation would be;
2 CO + O2 → 2 CO2
Balancing a chemical equation ensures that the number of atoms of each element are equal on both the reactants side and the products side. This ensures that the law of conservation of mass is obeyed in chemical reactions.
Answer:
Tend to keep the product concetration <u>low</u> and therefore drive the reaction <u>righward</u>
Explanation:
The fact the products of a reaction are quickly consumed by the next one would tend to keep the product concetration low and therefore drive the reaction righward (to the products).
This happens because the system will not achive equilibrium between the reactants and the product, and will keep producing it util the system achives equilibrium or the reactants dry out.
The answer would be "air, wood". Gases have the highest Kinetic energy and least Potential energy. Liquids have the 2nd highest Kinetic energy and 2nd least potential energy and solids have the least kinetic energy and highest potential energy.