Answer:
See explanation
Explanation:
The shorthand nuclear reaction equations have been given; the first particle in the parentheses is a reactant particle while the second particle is a product particle. These can now be rewritten as the longhand equations as follows;
238/92U + 4/2 He -------> 241/94Pu + 1/0 n
238/92U + 4/2 He ------> 241/94Pu + 1/0 n
14/7N + 4/2 He------> 17/8O + 1/1 p
56/26Fe + 2 4/2 He----> 60/29Cu + 4/2 He
-58 °C
The melting point is the same as the freezing point.
Answer:
i think its C im not so sure
Explanation:
nrjdkfkzhsugogo
The specific heat of the metal is 2.4733 J/g°C.
Given the following data:
- Initial temperature of water = 25.0°C
- Final temperature of water = 29.0°C
- Temperature of metal = 203.0°C
We know that the specific heat capacity of water is 4.184 J/g°C.
To find the specific heat of the metal (J/g°C):
Heat lost by metal = Heat gained by water.

Mathematically, heat capacity or quantity of heat is given by the formula;

<u>Where:</u>
- Q is the heat capacity or quantity of heat.
- m is the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Substituting the values into the formula, we have:

Specific heat capacity of metal, c = 2.4733 J/g°C
Therefore, the specific heat of the metal is 2.4733 J/g°C.
Read more: brainly.com/question/18691577