Let say the two train cars are of masses
and 
now if the speed of two cars are
and 
then we can say that the momentum of two cars before they collide is given by

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.
Now since in these two car motion there is no external force on them while they collide
So the momentum of two cars are always conserved.
hence we can say that the final momentum of two cars will be same after collision as it is before collision

Answer:
at resonance impedence is equal to resistance and quality factor is dependent on R L AND C all
Explanation:
we know that for series RLC circuit impedance is given by

but we know that at resonance
putting
in impedance formula , impedance will become
Z=R so at resonance impedance of series RLC is equal to resistance only
now quality factor of series resonance is given by
so from given expression it is clear that quality factor depends on R L and C
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
Given that,
Mass of a tribble, m = 2.5 kg
Radius, r = 1.4 m
The force on the tribble from the bucket does not exceed 10 times its weight.
To find,
The maximum tangential speed.
Solution,
The force acting on the tribble is equal to the centripetal force.
F = 10mg
The formula for the centripetal force is given by :

v is maximum tangential speed

So, the maximum tangential speed is 11.7 m/s.
Answer:
Final velocity, V = 11.5m/s
Explanation:
Given the following data;
Initial velocity, U = 2.5m/s
Acceleration, a = 1.5m/s²
Time, t = 6secs
To find the final velocity, we would use the first equation of motion
V = U + at
Substituting into the equation, we have
V = 2.5 + 1.5*6
V = 2.5 + 9
Final velocity, V = 11.5m/s