c. energy and object has.....
Answer:
I got you.. i'm in middle school and had that same question.
Explanation:
Refer to the diagram shown below.
The vertical distance traveled is
s = 25 m
The initial vertical launch velocity is zero.
Therefore
s = (1/2)*g*t²
where g = 9.8 m/s²
t = the time of flight, s
That is,
0.5*9.8*t² = 25
t² = 25/4.9 = 5.102
t = 2.26 s
Answer: 2.26 s
1) The distance travelled by the rocket can be found by using the basic relationship between speed (v), time (t) and distance (S):

Rearranging the equation, we can write

In this problem, v=14000 m/s and t=150 s, so the distance travelled by the rocket is

2) We can solve the second part of the problem by using the same formula we used previously. This time, t=300 s, so we have:

Answer:
The requested distance is 4320 meters
Explanation:
We can use the formula for velocity in this movement at constant velocity (v), which is defined as the quotient between the distance covered divided the time it took:

Since we know the velocity and the time, we can solve for the distance:

Answer:
560 m/s
Explanation:
Given,
Frequency ( f ) = 80 hz
Wavelength ( λ ) = 7.0 m = 7m
To find : Velocity ( v )
Formula : -
v = f λ
v = 80 x 7
v = 560 m/s
Hence, the velocity of the wave is 560 m/s.