Answer:
The impulse experienced by the object equals the change in momentum of the object. In equation form, F • t = m • Δ v. In a collision, objects experience an impulse; the impulse causes and is equal to the change in momentum. ... The collision would change the halfback's speed and thus his momentum.
Explanation:
<span>The atom becomes positively charged.
When you add electrons to a neutral atom, it is no longer a neutral atom, it has a negative change and is an anion. When you take away electrons from a neutral atom, it is no longer a neutral atom- it becomes a positive atom, and is a cation.</span>
The answer is c 1386j
This calculator is very helpful I use it on my homework
https://www.omnicalculator.com/physics/specific-heat
The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
Answer:
1.6 kg
Step-by-step Solution:
Since Force = mass × acceleration we have:
F = 8N
a= 5 m/s^2
m = ?
By plugging the values above into F=ma we obtain:

Therefore, the Chromebook has a mass of 1.6 kilograms.